Stability of soil organic carbon changes in successive rotations of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) plantations.
نویسندگان
چکیده
The importance of soil organic carbon (SOC) under forests in the global carbon cycle depends on the stability of the soil carbon and its availability to soil microbial biomass. We investigated the effects of successive rotations of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) plantations on the stability of SOC and its availability to microbes by adopting the two-step hydrolysis with H2SO4 and density fractionation. The results showed that successive rotations of Chinese fir decreased the quantity of total SOC, recalcitrant fraction, and carbohydrates in Labile Pool I (LP I), and microbial properties evidently, especially at 0-10 cm horizon. However, cellulose included in Labile Pool II (LP II) and the cellulose/total carbohydrates ratio increased in successive rotations of Chinese fir. The non-cellulose of carbohydrates included in LP I maybe highly available to soil microbial biomass. Hence the availability of SOC to microbial biomass declined over the successive rotations. Although there was no significant change in recalcitrance of SOC over the successive rotations of Chinese fir, the percentage of heavy fraction to total SOC increased, suggesting that the degree of physical protection for SOC increased and SOC became more stable over the successive rotations. The degradation of SOC quality in successive rotation soils may be attributed to worse environmental conditions resulted from disturbance that related to "slash and burn" site preparation. Being highly correlated with soil microbial properties, the cellulose/total carbohydrates ratio as an effective indicator of changes in availability of SOC to microbial biomass brought by management practices in forest soils.
منابع مشابه
Ion Flux in Roots of Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook) under Aluminum Stress
Chinese fir is a tall, fast-growing species that is unique to southern China. In Chinese fir plantations, successive plantings have led to a decline in soil fertility, and aluminum toxicity is thought to be one of the main reasons for this decline. In this study, Non-invasive Micro-test Technology was used to study the effect of aluminum stress on the absorption of 4 different ions in the roots...
متن کاملComparative Analysis of the Chloroplast Genomic Information of Cunninghamia lanceolata (Lamb.) Hook with Sibling Species from the Genera Cryptomeria D. Don, Taiwania Hayata, and Calocedrus Kurz
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is an important coniferous tree species for timber production, which accounts for ~40% of log supply from plantations in southern China. Chloroplast genetic engineering is an exciting field to engineer several valuable tree traits. In this study, we revisited the published complete Chinese fir (NC_021437) and four other coniferous species chlor...
متن کاملEffects of Thinning on Soil Organic Carbon Fractions and Soil Properties in Cunninghamia lanceolata Stands in Eastern China
Soil organic carbon (SOC) fractions, along with soil properties, are greatly affected by forest management. In this study, three thinning treatments: control (conventional management mode), moderate thinning intensity and heavy thinning intensity, were applied in Chinese fir (Cunninghamia lanceolata) plantations in eastern China. The dissolved organic carbon (DOC), soil light fraction organic c...
متن کاملTree Biomass Estimation of Chinese fir (Cunninghamia lanceolata) Based on Bayesian Method
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is the most important conifer species for timber production with huge distribution area in southern China. Accurate estimation of biomass is required for accounting and monitoring Chinese forest carbon stocking. In the study, allometric equation W = a(D2H)b was used to analyze tree biomass of Chinese fir. The common methods for estimating allo...
متن کاملA Hierarchical Bayesian Model to Predict Self-Thinning Line for Chinese Fir in Southern China
Self-thinning is a dynamic equilibrium between forest growth and mortality at full site occupancy. Parameters of the self-thinning lines are often confounded by differences across various stand and site conditions. For overcoming the problem of hierarchical and repeated measures, we used hierarchical Bayesian method to estimate the self-thinning line. The results showed that the self-thinning l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of environmental sciences
دوره 21 3 شماره
صفحات -
تاریخ انتشار 2009